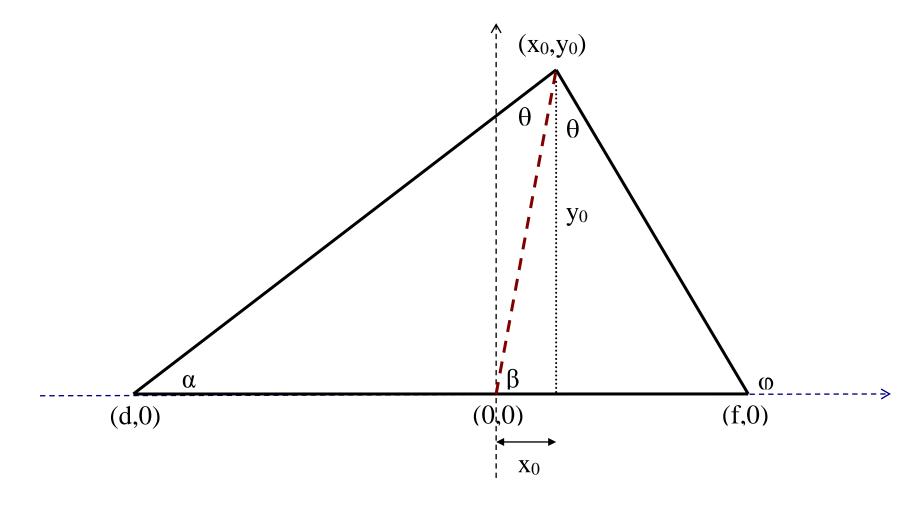
Ali Salehson Gothenburg Sweden



The triangle in figure is typical acute one i.e. the exterior angle φ is larger than 90°. Here the base (of the altitude y_0) is chosen to be on the x-axis. The bisector of the vertex angle

(the red dashed line) intersects with the base at the origin point (0,0) of the Cartesian x-y coordinates. It's obvious that the tangents of the angles φ , β and α have the same numerator y_0 but this time the interior angle (180° - φ) is involved, however this will result symbolically similar equations as for the obtuse triangle.

$$tan(\beta) = y_0 / x_0$$
, $tan(\alpha) = y_0 / (x_0 - d)$, d here is negative!
$$tan(\phi) = -tan(180^\circ - \phi) = -y_0/(f - x_0) = y_0/(x_0 - f)$$

Again the base of the triangle consists of two parts f and d and the task is proposed to find in general the relationship between these two parts. Here is the approach!

The exterior angles $\varphi = \beta + \theta$, while $\beta = \theta + \alpha$, which gives:

$$2\beta = \phi + \alpha$$
, and therefore $tan(2\beta) = tan(\phi + \alpha)$, by applying the tangent of sum:

2tan(β)
$$tan(φ) + tan(α)$$
----- = ------
1 -- $tan^2(β)$ 1 -- $tan(φ) tan(α)$

This equation can be simplified by multiplying the numerator of one side with the denominator of the other side which results another equation:

[
$$2\tan(\beta)$$
] [$1 - \tan(\varphi) \tan(\alpha)$] = [$\tan(\varphi) + \tan(\alpha)$] [($1 - \tan^2(\beta)$)

Prior continue it is important to be very careful with the +/-- signs. Now substitute the tangents with their values:

$$[2y_0 / x_0][1 - (y_0^2 / (x_0 - f) (x_0 - d)] = [y_0 / (x_0 - f) + y_0 / (x_0 - d)][1 - (y_0^2 / x_0^2)]$$

We can rewrite the above equation in order to recognize common values:

You can notice that y_0 is common numerator on both sides of the equation which can be eliminated by dividing by y_0 and we get:

Further simplifying:

Multiplying both sides by $x_0 [(x_0 - f)(x_0 - d)]$ will result:

$$x_0^2 - y_0^2$$
2 [$x_0^2 - y_0^2 - (f + d) x_0 + f d$] = [2 $x_0 - (f + d)$] [------]

Again multiplying both sides by x_0 the equation becomes:

$$2(x_0^2 - y_0^2) x_0 - 2(f + d) x_0^2 + 2f d x_0 = 2(x_0^2 - y_0^2) x_0 - (f + d) x_0^2 + (f + d) y_0^2$$

On both sides the term 2 $(x_0^2 - y_0^2)$ can be eliminated and the equation becomes

Wednesday, 27 January 2021 Acute Triangle Calculation Ali Salehson Gothenburg Sweden

$$2 f d x_0 = (f + d) x_0^2 + (f + d) y_0^2 = (f + d) (x_0^2 + y_0^2)$$

Since $(x_0^2 + y_0^2)$ = the square of the length of the bisector (the red dashed line) which is denoted by the letter r, and the last equation will become more simpler:

2 f d $x_0 = (f + d) r^2$ and can be rewritten:

 $2 x_0 / r^2 = (f + d) / f d$, and finally:

$$2 x_0 / r^2 = 1/f + 1/d$$

This means that the same relationship is valid as in the case of obtuse triangle.

<u>Conclusion:</u> the above equation defines generally how the two parts of the base are related to each other when the bisector intersects with the base!!