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The triangle in figure is typical acute one i.e. the exterior angle  is larger than 90o.  Here 
the base (of the altitude y0) is chosen to be on the x-axis. The bisector of the vertex angle 
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(the red dashed line) intersects with the base at the origin point (0,0) of the Cartesian x-y 

coordinates. It's obvious that the tangents of the angles , β and α have the same 

numerator y0 but this time the interior angle (180o - ) is involved, however this will result 
symbolically similar equations as for the obtuse triangle. 

tan(β) = y0 / x0 , tan(α) = y0 / (x0 - d)  , d here is negative! 

tan()  =  - tan(180o - ) = - y0/(f - x0) = y0/( x0 - f)  

Again the base of the triangle consists of two parts f and d and the task is proposed to find 

in general the relationship between these two parts. Here is the approach! 

  The exterior angles  = β +  , while β =  + α , which gives: 

  2β =  + α , and therefore tan(2β) = tan( + α) , by applying the tangent of sum: 

   2tan(β)              tan() + tan(α) 

------------------- = -------------------------- 

  1 --  tan2(β)         1 -- tan() tan(α)  
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This equation can be simplified by multiplying the numerator of one side with the 
denominator of the other side which results another equation: 

[ 2tan(β) ] [ 1 -- tan() tan(α) ] =    [tan() + tan(α)] [(1 -- tan2 (β)]    
 

Prior continue it is important to be very careful with the +/-- signs. Now substitute the 
tangents with their values: 
 

[2y0 / x0 ] [ 1 -- (y0
2 /( x0 - f ) (x0 - d) ] =    [y0/( x0 - f ) + y0 / (x0 - d) ] [1 - (y0

2 / x0
2
)]    

 
We can rewrite the above equation in order to recognize common values: 

   2y0                       y0
2

                                      y0                       y0                            y0
2
          

-------- [ 1 -- ------------------------- ]  =   [ -------------- +  ------------ ]  [1 -- -------- ]   

    x0            ( x0 - f ) (x0 - d)                    ( x0 - f )       (x0 - d)               x0
2
 

 

You can notice that y0 is common numerator on both sides of the equation which can be 

eliminated by dividing by y0 and we get: 
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     2                       y0
2
                                         1                            1                            y0

2
          

-------- [ 1 -- ------------------------- ]  =   [ -------------- +  ------------- ]  [1 -- -------- ]   

    x0            ( x0 - f ) (x0 - d)                    ( x0 - f )       (x0 - d)                x0
2
 

 
Further simplifying: 
 

     2           ( x0 - f ) (x0 - d)  -- y0
2
                (x0 - d)  +   ( x0 - f )          x0

2 - y0
2
         

-------- [ --------------------------------- ]  =   [ -----------------------------  ]  [--------------- ]   

    x0            [( x0 - f ) (x0 - d)]                      [( x0 - f )(x0 - d)]                  x0
2
 

  

Multiplying both sides by  x0 [( x0 - f ) (x0 - d)] will result: 

                                                                                         x0
2 - y0

2
         

 2 [ x0
2
 -- y0

2
 --  (f + d) x0 + f d ] =    [ 2 x0 -- (f + d) ]  [ -------------  ]   

                                                                                              x0 

Again multiplying both sides by x0 the equation becomes: 

 

2 (x0
2
 -- y0

2
) x0 -- 2 (f + d) x0

2
 + 2 f d x0 =  2 (x0

2
 -- y0

2
) x0 -- (f + d) x0

2
 + (f + d) y0

2
  

 

On both sides the term 2 (x0
2
 -- y0

2
) can be eliminated and the equation becomes  
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2 f d x0  =  (f + d) x0
2
  +  (f + d) y0

2
 = (f + d) (x0

2
 + y0

2
) 

 

Since (x0
2
 + y0

2
) = the square of the length of the bisector (the red dashed line) which is denoted 

by the letter r , and the last equation will become more simpler: 
 

2 f d x0  =  (f + d) r2
 and can be rewritten: 

 

2 x0 / r2
 =  (f + d) / f d , and finally:  

 

                                      2 x0 / r2 =  1/f + 1/d   

 
This means that the same relationship is valid as in the case of obtuse triangle. 
 
Conclusion: the above equation defines generally how the two parts of the base are related to 
each other when the bisector intersects with the base!! 
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