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The triangle in figure is typical acute one i.e. the exterior angle ¢ is larger than 90°. Here
the base (of the altitude yo) is chosen to be on the x-axis. The bisector of the vertex angle
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(the red dashed line) intersects with the base at the origin point (0,0) of the Cartesian x-y
coordinates. It's obvious that the tangents of the angles ¢, B and a have the same
numerator yo but this time the interior angle (180° - @) is involved, however this will result
symbolically similar equations as for the obtuse triangle.

tan(B) = yo/ xo , tan(a) = yo / (xo - d) , d here is negative!
tan(p) = - tan(180° - @) = - yo/(f - x0) = yo/( o - 1)

Again the base of the triangle consists of two parts f and d and the task is proposed to find
in general the relationship between these two parts. Here is the approach!

The exterior angles @ =  + 0 , while § = 0 + a , which gives:
2B = @ + a, and therefore tan(2P) = tan(¢ + @), by applying the tangent of sum:

2tan(P) tan(@) + tan(a)

1 -- tan?(P) 1 -- tan(¢p) tan(a)
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This equation can be simplified by multiplying the numerator of one side with the
denominator of the other side which results another equation:

[ 2tan(B)] [ 1 - tan(e) tan(a) ] = [tan(e) + tan(a)] [(1 -- tan? (B)]

Prior continue it is important to be very careful with the +/-- signs. Now substitute the
tangents with their values:

2o/ Xo][1 - (Yo* /(Xo-f) (Xo-d)1= [yo/(Xo-F)+Yo/ (Xo-d)I[L-(Yo*/ Xo?)]

We can rewrite the above equation in order to recognize common values:

2Y0 Yo? Yo Yo Vo2

You can notice that Yo is common numerator on both sides of the equation which can be
eliminated by dividing by Yo and we get:
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2 yo2 1 1 yo2

-------- I e Bl B I N
Xo (Xo - ) (Xo - d) (Xo-f)  (Xo-d) X0

Further simplifying:

2 (Xo-F)Xo-d) Ve (Xo-d) + (Xxo-f) Xo% - Yo

-------- R e Bl el | IRy
Xo [( Xo - ) (Xo - d)] [( Xo - f)(Xo - d)] Xo”
Multiplying both sides by Xo [( Xo - T) (Xo - d)] will resuilt:
Xo? - y02
2[Xo® Yoo - (F+d)yxo+fd]= [2Xo- (F+d)] [-rrrrerer ]
X0

Again multiplying both sides by Xo the equation becomes:
2 (Xo% - Vo) Xo =2 (F+d) Xo® + 2 f d Xo= 2 (Xo® - Yo?) Xo = (F+d) Xo® + (f + d) yo?

On both sides the term 2 (Xo2 -- yoz) can be eliminated and the equation becomes
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2fdxo = (F+d)xo? + (F+d)yo? = (F+d) (Xo? + Yod

Since (Xo2 + yoz) = the square of the length of the bisector (the red dashed line) which is denoted
by the letter r , and the last equation will become more simpler:

2fdxo = (f+d)r? and can be rewritten:
2Xo/1°= (F+d)/fd, and finally:
2Xo/r?= 1/f+ 1/d

This means that the same relationship is valid as in the case of obtuse triangle.

Conclusion: the above equation defines generally how the two parts of the base are related to
each other when the bisector intersects with the base!!
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