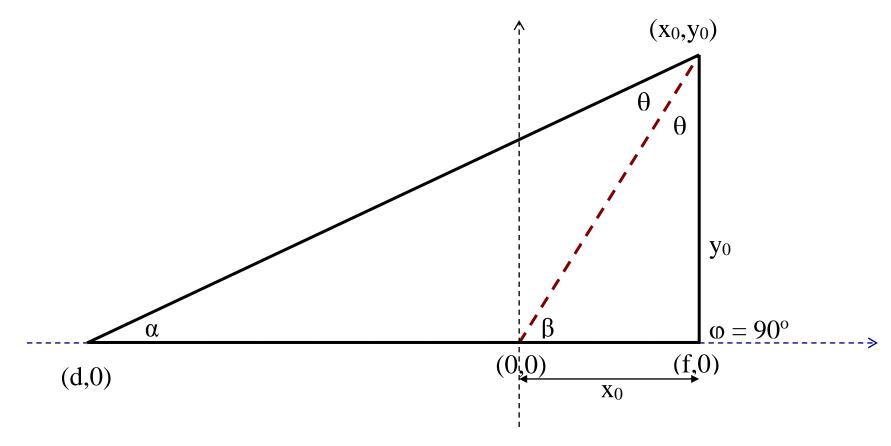
Ali Salehson Gothenburg Sweden



The following calculation is an extension of the obtuse triangle calculation. The triangle in figure is typical right-angled one i.e. the exterior angle ϕ is equal to 90°.

As before the base (of the altitude y_0) is chosen to be on the x-axis. The bisector (the red dashed line) of the vertex angle intersects with the base at the origin point (0,0) of the Cartesian x-y coordinates. As a result, the base of the triangle is consisting of two parts f and d and it should be clear and obvious that $f = x_0$ in this scenario. The task is proposed to find the relationship between these two parts in this particular case. Here is the approach!

It will be more convenient to avoid using the angle φ in calculations due to the fact that $tan(\varphi) = infinity$ compared with the scenario presented for the obtuse triangle. Also it will be shown that the tangents of the angles θ , β and α are sufficient to find out the relationship between the two parts of the base, since it's possible to eliminate the altitude y_0 from the used equations. According to the figure of this scenario:

$$tan(\beta) = y_0 / x_0$$
, $tan(\theta) = x_0 / y_0$ and $tan(\alpha) = y_0 / (x_0 - d)$, d here is negative!

The exterior angle $\beta = \theta + \alpha$, and this yields to:

 $tan(\beta) = tan(\theta + \alpha)$, and by applying the tangent of sum:

The above equation can be simplified by multiplying the numerator of the left side with the denominator of the right side which results another equation:

[
$$tan(\beta)$$
] [1 -- $tan(\theta)$ $tan(\alpha)$] = [$tan(\theta)$ + $tan(\alpha)$]

Prior continue it is important to be very careful with the +/-- signs. Now substitute the tangents by their values:

$$[y_0 / x_0] [1 - (x_0 / y_0) \{y_0 / (x_0 - d)\}] = [(x_0 / y_0) + (y_0 / (x_0 - d))]$$

We can rewrite the above equation in order to recognize common values:

You can notice that y_0 can be cancelled by dividing by y_0 and we get:

Further simplifying:

$$y_0$$
 $(x_0 - d) - x_0$ $x_0 (x_0 - d) + y_0^2$ x_0 $(x_0 - d)$ $y_0 (x_0 - d)$

Multiplying both sides by $(x_0 - d)$ as well as eliminating x_0 will result:

$$y_0$$
 -- $(d x_0) + x_0^2 + y_0^2$ ----- [-- d] = [------] and subsequently: y_0

$$y_0^2$$
 (-- d)= -- (d x_0^2) + x_0 (x_0^2 + y_0^2)

Since $(x_0^2 + y_0^2) = r^2$ i.e. the square of the *length* of the bisector (the red dashed line) which is denoted by the letter r, the last equation will become simpler:

$$(-d)(r^2 - x_0^2) = -(d x_0^2) + r^2 x_0$$

Monday, 25 January 2021 Right-angled Triangle Calculation

Ali Salehson Gothenburg Sweden

$$2d x_0^2 - d r^2 = r^2 x_0$$
 and then: $d (2x_0^2 - r^2) = r^2 x_0$

$$d =$$
 -----, put it another way using the reciprocal: $2(x_0/r)^2$ -- 1

then by putting $x_0 = f$ on the left side we get:

1 1 ---- + ---- = 2
$$x_0/r^2$$
 d f

Monday, 25 January 2021 Right-angled Triangle Calculation Ali Salehson Gothenburg Sweden

However this is exactly the same relationship as with the obtuse triangle but here $f=x_0$ when the exterior angle ϕ is equal to 90°, i.e. the triangle is right-angled in this case. Referring to this equation:

 $d(2x_0^2 - r^2) = r^2 x_0$ we can solve for x_0 : and consequently for f:

 $x_0^2 - (r^2/2d) x_0 - (r^2/2) = 0$ which has the roots:

 $x_0 = (r^2/4d) \pm [(r^2/4d)^2 + (r^2/2)]^{1/2}$ and we choose the + value as shown in figure:

 $f = x_0 = (r^2/4d) + [(r^2/4d)^2 + (r^2/2)]^{1/2}$, I'll be discussing the -- value in future articles.